
IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.6, December 2012

 1110

Web Page Prefetching Mechanism: A Study

Meghna Khatri
Deptt. Of Computer Science Engineering

U.I.E.T., M.D.U.
Rohtak, India

Abstract— Web users are facing the problems of information
overload and drowning due to the significant and rapid growth in the
amount of information and the number of users. Prefetching
techniques try to predict the next set of files/pages that will be
requested, and use this information to pre-fetch the files/pages into
the server cache. This greatly speeds up access to those files, and
improves the users’ experience. In this paper, a survey of the web
page prefetching mechanism is provided.
Keywords- prefetching mechanism, web page.

I. INTRODUCTION (HEADING 1)

It is indisputable that the recent explosion of the World

Wide Web has transformed our way of doing work. The single

most important piece of software that enables any kind of Web

activity is the Web server. Since its inception the Web server

has always taken a form of a daemon process. If the World

Wide Web is to be approached from a client-server view then,

as the name suggests, Web server is the server part of the

scheme and a browser is the client. In a typical interaction a

user will request a file from a server either by clicking on a

link or typing the request in manually. The browser translates

it into an HTTP request, connects to the proper server, sends

the request and waits for a reply. Meanwhile the Web server

has been waiting for requests. It accepts the connection from

the client, parses the HTTP request and extracts the name of

the file. The server then gets the file from its cache or from its

disk, formats an HTTP reply that satisfies the request and

sends it to the browser. The browser then closes the

connection. Access to disk is much slower than access to

memory. Just as in the case of OS file systems, caching

techniques are used in Web servers to reduce disk accesses.

One difference is that Web server file accesses are all reads due

to the nature of the application. In this context the cache is a

collection of files that logically belong on the disk but are kept

in memory for performance reasons. Great efforts are being

made to address these problems and improve Web

performance.

A popular technique to reduce web latency is web page

prefetching. Web Pre-fetching, which can be considered as

“active” caching, builds on regular Web caching and helps to

overcome its inherent limitation. It attempts to guess what the

next requested page will be. For regular HTML file accesses,

pre-fetching techniques try to predict the next set of files/pages

that will be requested, and use this information to pre-fetch the

files/pages into the server cache. This greatly speeds up access

to those files, and improves the users’ experience. To be

effective however, the pre-fetching techniques must be able to

reasonably predict (with minimum computational overheads)

subsequent web accesses.

Web pre-fetching builds on web caching to improve

the file access time at web servers. The memory hierarchy

made possible by caches helps to improve HTML page access

time by significantly lowering average memory/disk access

time. However, cache misses can reduce the effectiveness of

the cache and increase this average time. Pre-fetching attempts

to transfer data to the cache before it is asked for, thus

lowering the cache misses even further. Pre-fetching

techniques can only be useful if they can predict accesses with

reasonable accuracy and if they do not represent a significant

computational load at the server.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.6, December 2012

 1111

II. BACKGROUND
Web Pre-fetching, which can be considered as “active”

caching, builds on regular Web caching and helps to overcome

its inherent limitation. It attempts to guess what the next

requested page will be. For regular HTML file accesses, pre-

fetching techniques try to predict the next set of files/pages

that will be requested, and use this information to pre-fetch the

files/pages into the server cache. This greatly speeds up access

to those files, and improves the users’ experience. To be

effective however, the pre-fetching techniques must be able to

reasonably predict (with minimum computational overheads)

subsequent web accesses.

This section introduces current techniques for web

page pre-fetching mechanism. Existing pre-fetching

approaches can be classified as client-side, proxy-based or

server side.

A. Client-Side Prefetching
 In the client-side approach, the client determines pages to

be prefetched and request them from the server. A key
drawback of this approach is that it typically requires
modifications to the client browser code or use of a plug-in,
which may be impractical. Furthermore, it may double the
required bandwidth, actually resulting in deteriorated
performance. For example, in the worst-case, the pre-fetcher
will repeatedly request files that the user never wants to see.
Therefore, the number of requests to the server will double
without any benefit to the user. Finally, maintaining cache
coherency in client-side pre-fetching approaches is expensive.
Cache coherency deals with the following issue. If a file in
cache has changed on the server the new version of the file
needs to be presented to the user instead of the stale cached
version. This requires checking with the server on the state of
the file(s) in the cache (possibly through a special protocol). As
a result there is increased complexity on the client and the
server side, as well as increased traffic between the two.

B. Proxy Prefetching
The proxy-based prefetching approach uses an

intermediate cache between the server and a client . This

proxy can request files to be prefetched from the server, or

the server can push some files to the proxy. Both of these

schemes increase the required bandwidth. Furthermore, like

client-side schemes, maintaining cache coherency in proxy-

based schemes is expensive. This overhead gets even more

significant when multiple levels of proxy caches are

employed.

One advantage of client and proxy side prefetching is

that they separate the HTTP server part from the caching part

thus allowing greater geographic and IP proximity to the client.

For example, placing a proxy cache next to or inside of an

organization’s subnet means that the data a user requests will

have far fewer IP hops. These schemes are also better suited

for user-pattern tracking algorithms. In particular, the client-

side mechanism is dedicated to a particular user and spends all

its time trying to follow what the user might want. By the

same token a proxy cache dedicated to a particular

organization will do a good job following that organization’s

preferences. Another advantage is that requests from multiple

servers can be cached.

C. Server-Side Prefetching
In server-side approaches, the entire prefetching

mechanism resides on the Web server itself. These approaches

avoid the problems mentioned above. There is no increase in

the bandwidth, as no files that haven’t been requested will be

sent to the client. Furthermore, maintaining cache coherency

in this case is almost effortless. Proxy-based caches and client-

side prefetching mechanisms require additional messaging and

protocols between the cache and the HTTP server for cache

coherency. This overhead can become expensive in terms of

wasted bandwidth. There is no complicated protocol and no

extra messaging outside the server in case of server-side

schemes.

As the file system in this case is either local or

mounted, all the messaging is within the server and does not

require external bandwidth. Furthermore, the OS file system

guarantees access to the latest copy of a file, and provides

excellent and easy to use mechanisms to check file attributes

such as creation and modification times and dates, to assist in

maintaining cache coherency. Another distinction with the

client-related schemes is that client-side prefetching makes

Identify applicable sponsor/s here. (sponsors)

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.6, December 2012

 1112

decisions on which files to prefetch based on the particular

user’s preferences, whereas in the server-side prefetching,

decisions are based on the document popularity, and more than

one client can benefit from it.

A server-side prefetching approach based on

analyzing server logs and predicting

user actions on the server side is presented by Su et. al. [1].

Tracking users on a server, however, is quickly becoming

impractical due to the widespread use of web proxies. The

proxy either presents one IP address to the server for a large

group of users, or it cycle through some set of IP addresses

according to its load-balancing scheme. Both cases render

a single user identity moot.

III. LITERATURE REVIEW

A. Study of Prefetching Strategies
This section corresponds to the study of various

strategies involved till now for prefetching web pages.

Jose Borges and Mark Levene[2] propose a dynamic

clustering-based method to increase a Markov models accuracy

in representing a collection of user web navigation sessions. The

method makes use of the state cloning concept to duplicate

states in a way that separates in-links whose corresponding

second-order probabilities diverge. In addition, the new method

incorporates a clustering technique which determines ancient

way to assign in-links with similar second-order probabilities to

the same clone.

Siriporn Chimphlee [3]present a rough set clustering

to cluster web transactions from web access logs and using

Markov model for next access prediction. Using this approach,

users can effectively mine web log records to discover and predict

access patterns. He performs experiments using real web trace

logs collected from .the servers. In order to improve its prediction

ratio, the model includes a rough sets scheme in which search

similarity measure to compute the similarity between two

sequences using upper approximation.

Silky Makker and R.K Rathy[4]proposes a

bracing approach for increasing web server performance by

analyzing user behavior, in this pre-fetching and prediction is

done by pre-processing the user access log and integrating the

three techniques i.e. Clustering, Markov model and association

rules which achieves better web page access prediction

accuracy; This work also overcomes the limitation of path

completion i.e. by extracting web site structure paths are

completed, which helps in better prediction, decreasing access

time of user and improving web performance.

B. Study of Different Models for Prefetching
This section corresponds to the study of various

algorithm which has been used in the various stages of web

page prediction process i.e. V. Padbanabham and J. Mogul [5]

use N-hop Markov models predicted the next web page users

will most likely access by matching the user’s current access

sequence with the user’s historical web access sequences for

improving prefetching strategies for web caches.

R.R. Sarukkai [6] used first-order Markov models to

model the sequence of pages requested by a user for

predicting the next page accessed. A “personalized”

Markov model is trained for each individual and used for

predictions in user’s future request sessions. In practice,

however, it is very expensive to construct a unique model for each

user respectively, and the problem gets even worse when there

exist thousands of different users within a big Web site.

F. Khalil[7] introduces the Integration

Prediction Model (IPM) by combining Markov model,

Association rules and clustering algorithm together.

Then, the prediction is performed on the cluster sets

rather than the actual sessions. The IPM integration

model is based on the different constraint. The web user

sessions first are divided into a number of clusters using

k-means clustering algorithm and cosine distance

measure. Then, an integration model computes Markov

model prediction on the resulting clusters. This

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.6, December 2012

 1113

algorithm improves the state space complexity because

Markov model prediction carried out on the particular

clusters as opposed to the whole data set. In the case of

state absence in the training data or where, the state

prediction probability is not marginal, Association rules

are examined more states than Markov model by

looking at more history. Lastly, if a new page is

presented, the cosine distance is calculated and identifies

an appropriate cluster that a new web page should

belong to. The integration model has been proved

through the experiments that improve the prediction

accuracy. Moreover, implementing the prediction model

on the clusters achieves better results than on the non-

clustered data. Although, a web page access prediction

performance was improved, however, it can be seen that

their integrated algorithm has a complicated procedures

and must repeatedly employ in order to increase their

prediction performance.

 S. Chimphlee [3] presented a Hybrid Markov

Fuzzy Models (HyMFM) that are obtained by integrating

the advantages of all three prediction models: Markov

model, Association rules and Fuzzy Adaptive Resonance

Theory (Fuzzy ART). HyMFM algorithm was developed

for the web user sessions clustering by proposing the

new sequence representations and the new similarity

measures in incremental learning of Fuzzy ART control

structure. A web user session was represented into the

transition matrix representation, referred to as session

matrix, which is constructed based on a transition matrix

of a first Hybrid Markov model. Both elements fit well

into the design of this thesis and the clustering task

which the web user sessions are treated as order sets of

accesses. Consequently, the new similarity measures

were developed to enable the application of Fuzzy ART

clustering. This study defined two new similarity

measures: Matrix norm similarity and Matrix distance

similarity. These measures alleviate the overestimation

problem in Fuzzy ART algorithm which use the city-block

distance metric as the similarity between input and

prototypes. Thus, the web user sessions were clustered

into groups with similar patterns in during the training

phase and when it is confronted by a new input, it

produces a response that indicates which cluster the

pattern belongs to and then HyMM applied to each

cluster.

IV. CONCLUSION
Web page prefetching reduces users’ perceived latency but i t

also increases network traffic. Though pre-fetching adds no

extra traffic to network but sometimes burstiness of individual

sources is increased, leading to increased average queue sizes in

network switches. Some other negative network effects due to

pre-fetching include unknown cache-ability, server overhead,

side-effects of retrieval and user activity conflation. All these

give way to improved in this approach and scope of more

research in this field.

REFERENCES
The template will number citations consecutively within

brackets [1]. The sentence punctuation follows the bracket [2].
Refer simply to the reference number, as in [3]—do not use
“Ref. [3]” or “reference [3]” except at the beginning of a
sentence: “Reference [3] was the first . . .”

Number footnotes separately in superscripts. Place the
actual footnote at the bottom of the column in which it was
cited. Do not put footnotes in the reference list. Use letters for
table footnotes.

Unless there are six authors or more give all authors'
names; do not use “et al.”. Papers that have not been published,
even if they have been submitted for publication, should be
cited as “unpublished” [4]. Papers that have been accepted for
publication should be cited as “in press” [5]. Capitalize only
the first word in a paper title, except for proper nouns and
element symbols.

For papers published in translation journals, please give the
English citation first, followed by the original foreign-language
citation [6].

[1] Brian Amento, Loren Terveen, and Will Hil l .” Does “authority” mean

quality? Predicting expert quality ratings of web documents”. In the
23rd annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 296–303, 2000.

[2] J. Borges and M. Levene, “ A clustering based approach for modeling
user navigation with increased accuracy” Proceedings of the Second
International Workshop on Knowledge Discovery from Data Streams

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.6, December 2012

 1114

(IWKDDS) in conjunction with PKDD 2005, Porto, Portugal,
Outubro,2005

[3] Siriporn Chimphlee, Naomie Salim, Mohd Salihin Bin Ngadiman,
Witcha Chimphlee, Surat Srinoy,” Rough Sets Clustering and
Markov model for Web Access Prediction”,2006.

[4] Silky Makkar and R. K. Rathy,”Web Server Performance Optimization
Using Prediction Prefetching Engine”International Journal of
Computer Applications, Volume 23– No.9, June 2011.

[5] V. Padmanabhan and J. Mogul, “Using Predictive prefetching to
improve World Wide Web latency”, ACM SIGCOMM Computer
Comm. Rev., Vol. 26,no.3, July 1996

[6] R. R. Sarukkai, “Link prediction and path analysis using Markov
chain”,proc. of the 9th International World Wide Web Conference on
Computer networks, 2000.

[7] F. Khalil, J. Li and H. Wang,” Integrating recommendation models for
improved web page prediction accuracy”. Proceedings of the 31th
Australasian Computer Science Conference, (ACSC'08), Wollongong,
NSW, pp: 91-100,2008.

