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Abstract— Sequential pattern mining is an important research 
area in data mining field for extracting useful knowledge from 
sequence databases.  In this paper, we have proposed a Tree 
based sequential pattern mining algorithm which can generate 
sequential patterns from the fast updated sequential pattern tree 
(called FUSP-tree) structure by recursively creating set of small 
trees from the large tree. FUSP-tree stores complete set of 
sequences with only frequent items, their frequency and links for 
the given sequence database. So, it can generate the complete set 
of sequential patterns without generating any unnecessary 
candidate sequences and without repeated scanning the original 
databases. We have compared our proposed approach with two 
state-of-the-art algorithms and our performance study shows that, 
for static datasets, Tree based sequential pattern mining 
algorithm is much faster than existing apriori based GSP 
algorithm and it is also faster than  existing  PrefixSpan 
algorithm  which is pattern growth approach.  
 
Keywords: Sequential Pattern, Data Mining, FUSP-tree, 
Sequence Database, Frequent Pattern. 

I. INTRODUCTION 
Sequential pattern mining in transactional databases plays 

an important role in data mining field. Sequential pattern 
mining means discovering all the frequently occurring ordered 
events or subsequences from sequence databases. Sequential 
pattern mining is widely used in the analysis of customer 
shopping behavior, web access patterns, in the analysis of 
biological sequences, sequences of events in science and 
engineering, and in natural and social developments. Agrawal 
and Srikant first introduced sequential pattern mining in 1995 
[1]. Based on their study, sequential pattern mining is stated as 
follows: “Given a sequence database or a set of sequences 
where each sequence is an ordered  list events or elements and 
each event or element is a set of items, and given a user-
specific minimum support threshold or min_sup, sequential 
pattern mining is the process of finding the complete set of 
frequent subsequences, that is, the subsequences whose 
occurrence frequency in the set of sequences or sequence 
databases is greater than or equal to min_sup.”  Past studies 
developed two major classes of sequential pattern mining 
methods. First class proposed several mining algorithms [1] 
[2] [3] based on apriori property which states that, every 
nonempty subsequences of a sequential pattern are also a 
sequential pattern. Among them, GSP [2] and SPADE [3] are 
most efficient apriori- based algorithms. Both of them find all 
sequential patterns by using level-wise candidate sequences 
generate and test approach which increases the time and space 
complexity. Another class proposed algorithms like FreeSpan 
[4] and PrefixSpan [5] based on pattern growth approach. 
Pattern growth approach does not generate any candidate 

sequences like apriori based methods GSP and SPADE, but it 
creates lots of projected databases and each time it needs to 
scan the projected databases to find the frequent items. In this 
paper, we present a Tree based sequential pattern mining 
algorithm which mines the patterns from the tree structure. 
This algorithm first generates a FUSP-tree which is proposed 
by Lin in 2008 [6], from original sequence database to store 
only frequent items. For this reason, the large database is 
compressed into a smaller data structure. When frequent items 
are not changed, the approach doesn’t need to rescan the 
original database once the tree is created and can get the 
results only from the tree. Then, it recursively projects the 
FUSP-tree into a set of smaller projected trees based on the 
current sequential patterns and sequential patterns are grown 
by exploring only locally frequent fragments in each projected 
tree. It finds all sequential patterns without generating any 
candidate sequence and links stored in the FUSP-tree help it to 
find the frequent items easily without scanning each projected 
trees.  

In the rest of the paper, section II describes related works; 
section III introduces our concept of Tree based mining with 
an example. Performance analysis is shown in section IV and 
finally section V draws conclusion that points out the 
potentiality of our work. 

 

II. REVIEW OF   WORKS 
We have studied a set of mining approaches to understand 

the effectiveness of pattern discovery in data mining field. 
Some of them are described sequentially in this section. 

A. FP-Growth  Algorithm  
FP Growth algorithm [7] was proposed by Han, Pie & Yin 

in 2000 to mine the frequent patterns from the tree structure 
without candidate set generation. They proposed two novel 
algorithms, one is FP-tree construction algorithm to keep the 
large database in a compact form and another is FP-growth 
algorithm to mine the frequent patterns from the FP-tree. FP-
tree structure is a compress tree structure which stores only 
frequent items in the tree. The construction process of the FP-
tree was subdivided into two parts. First, it scans the original 
database to find the frequent items and their support-count, 
after that; it scans again the database from first transaction to 
last to construct the tree. The links between parent node and 
child node are singly directed. A header table was also kept to 
store the frequent items and the links to the first occurrence of 
those items into the tree. After the tree is completed, the actual 
mining algorithm (FP-growth) is initiated to find the frequent 
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patterns recursively from the tree. The recursive process is 
started from the lowest frequent items in the header table. 

B. GSP Algorithm 
GSP (Generalized Sequential Patterns) [2] is a sequential 

pattern mining algorithm which was proposed by Srikant and 
Agrawal in 1996. GSP is an Apriori based algorithm. It 
generates lots of candidate sets and it tests them by multiple 
passes. The algorithm to find the sequential patterns is 
outlined as follows: First, it scans the database to find the 
frequent items, that is, those with equal or greater than 
minimum support. All of those frequent items are length-1 
frequent sequences. Second, each of them starts with a seed 
set of sequential patterns to generate new potentially 
sequential patterns, called candidate sequences. Each 
candidate sequence contains more than one item from which 
pattern it is generated. The length of each sequence is the 
number of instances of items in a sequence.  All of the 
candidate sequences have the same length in a given pass. To 
find the frequent sequence, the algorithm then scans the 
database and discards those candidates which are infrequent. 
Finally, after getting the frequent sequences it makes those 
sequences as the seed for the next pass. The algorithm 
terminates, when there are no frequent sequences at the end of 
a pass, or when there are no candidate sequences generated. 

C. PrefixSpan  Algorithm 
PrefixSpan [5] is a projection-based, sequential pattern-

growth approach for efficient and scalable mining of 
sequential patterns, which is an extension of FP-growth [7]. 
Unlike apriori-based algorithms it does not create large 
number of useless candidate sets and generates complete set of 
sequential patterns from large databases efficiently. The major 
cost of PrefixSpan is database projection, i.e., forming 
projected databases recursively. To find the sequential 
patterns, PrefixSpan recursively projects a sequence database 
into a set of small projected databases and sequential patterns 
are grown in each projected database by exploring only locally 
frequent fragments. In this approach, sequential patterns from 
sequence database can be mined by a prefix-projection method 
in the following steps: (1) Find length-1 sequential patterns. 
Scan database once to find all the frequent items in sequences. 
Each of these frequent items is a length-1sequential pattern. 
(2) Divide search space. The complete set of sequential 
patterns can be partitioned according to the number of length-
1 sequential patterns (prefixes) found in step-1. (3) Find 
subsets of sequential patterns. The subsets of sequential 
patterns can be mined by constructing the corresponding set of 
projected databases and mining each recursively. 

 

III. PROPOSED APPROACH 
Here we have proposed our Tree based sequential pattern 

mining approach which is based on FUSP-tree structure. Our 
objective is to find the sequential patterns from the tree by 
generating set of small projected trees from the large tree 
recursively. For understanding about the FUSP-tree, a brief 
overview of this tree structure is given below: 

A. FUSP Tree Strucure 
To efficiently mine the sequential patterns, Lin et al.2008 

proposed the FUSP-tree [6] structure and its maintenance 
algorithm. FUSP-tree consists of one root node labeled as 
‘root’ and a set of prefix subtrees as the children of the root. 
Each node in the prefix subtrees contains item-name; which 
represents the node contains that item, count; the number of 
sequences represented by the section of the path reaching the 
node, and node-link; links to the next node of that item in the 
next branch of the FUSP-tree. The FUSP-tree contains a 
Header-Table which store frequent item, their count and the 
link of first occurrence in the tree of that item. This table helps 
to find appropriate items or sequences in the tree. The 
construction process is similar to FP-tree [7] i.e. the 
construction process is executed tuple by tuple from first 
sequence to last. But the differences from FP-tree are, the link 
between two nodes is symbolized by‘s’ or ‘i’ as like IncSpan 
[8]. Here, symbol ‘s’ indicates the sequence relation between 
two different events in a sequence and symbol ‘i’ indicates the 
itemset relation between two items in a event and also the 
links are bidirectional which will help to update process easier. 
For example, in Table 1 sequence database, the first sequence 
is “10: < {a}{a b c}{a c}{d}{c f}>”. This sequence has five 
events or elements, namely {a}, {a b c}, {a c}, {d}, {c f}. 
First event contain only one item {a}. Item {a} is the first 
node < a: 1> of the tree which is linked as a child of the root 
and the link between root and first node is marked as ‘s’. 
Second event contains three items. So, for this event, there are 
three nodes <a: 1>, <b: 1>, < c: 1>. Node <a: 1> is linked to 
the first node <a: 1 > of the tree and the link between them is 
marked as ‘s’. Node <b: 1> is linked with second node <a: 1 > 
and node <c: 1> is linked to node <b: 1 >. Both links between 
node <a: 1> and<b: 1>, and, node<b: 1> and <c: 1> are 
marked as ‘i’ respectively. This four nodes also store in the 
Header-Table. In this similar way, the whole tree is 
constructed. The FUSP-tree for the Table 1 sequence database 
is shown in Figure 1. 

B. The Algorithm 
1) Notation 

 
Here, k = Length of sequential pattern, α = Sequential 

pattern, s = Label of edge between two different events, i = 
Label of edge between two items in the same event, f = 
Frequent item. 

2) The Proposed Algorithm 
 

The details of the proposed Tree based sequential pattern 
mining algorithm are described as a pseudo code below: 

Input: A sequence database which contains customer-id and 
customer sequence and a minimum support threshold 
min_support. 

Output: The complete set of sequential patterns. 

Algorithm: (Tree Based Sequential Pattern Mining) 

Step 1: Scan the sequence database to find length-1 sequential 
patterns and their counts. 
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Step 2: Construct the FUSP-tree and its corresponding header 
table. The construction process is described above in this 
section. 

Step 3: Call, Tree Based Sequential Pattern Mining (FUSP-
tree, k, Header-Table) 
{ 

  for each length-k sequential pattern α from header table       

 {                    

   Generate new projected FUSP-tree and header table with new frequent   
item f; 

   for each edge which prefix is α of the old FUSP-tree 

 { 

      if the label of the edge is ‘s’ then 

      Append (f) to the α to form the new (k+1) sequential pattern α/; 

     else if  the edge label is ‘i’ then 

     Assemble f to the last event of α to form new (k+1) sequential   pattern              
α/; 
     Print α/;    

 }  

 Call, Tree Based Sequential Pattern Mining (new FUSP-tree, k+1, new     
header table);  

}            

 }     

C. An Example 
For proper understanding of our proposed approach, 

in this section, we will try to describe our algorithm step 
by step with the help of an example. As for input, our 
algorithm just takes a sequence database and minimum 
support threshold, min_support. 

 
                     Table 1: Sequence Database [5] 

 
 
 
 
 
 
 
 
 
         

In our example, we have used the above sequence database 
which is shown in Table 1 and we can see that, the table 
contains four sequences and seven items which are: {a, b, c, d, 
e, f, g}. And let the minimum support is 50% means for four  
sequences, the minimum support is (4*0.5) = 2.  

 
 
 

Table 2: Length-1 Patterns and Their Support Counts 
 
 

 
 
 
 
 
 
 
 
 
 

 
The 
algorit
hm’s 
steps are described below using the above database: 
Step1: Scan the sequence database shown in Table 1 to find 
the length-1 sequential patterns and their counts. After this 
step we get the length-1 sequential patterns. The length-1 
sequential patterns and their corresponding counts are given in 
Table 2. 
Step 2: Again scan the sequence database to create the FUSP-
tree and the Header Table. We have described the construction 
process of FUSP-tree above in this section using the same 
database. After this step we get the final FUSP-tree which is 
shown in Figure 1.  
Step 3: After the FUSP-tree is constructed, the mining process 
will be executed to get the sequential patterns from the tree. 
The mining process is briefly described below: 
Sub Step1: From the header table we first pick the top prefix 
item <{a } > and by using its link we find the first occurrence 
of that item in the FUSP-tree. From the Figure 1 we see that 
first occurrence of <{a} > has two child nodes, so we get two 
branches which are shown in figure 2. From the first node of < 
{a} >, we get the next link for the same item’s node and 
through this node we get another branch, so we get three 
branches for prefix < {a}> which are shown in Figure 3 and 
by this way we get all the branches of the new projected tree 
prefixed with < {a}> which are shown in Figure 4. All the 
length-2 sequential patterns for < {a}>-projected tree are 
found by concatenation of prefix < {a}> with the frequent 
sequences shown in the Header Table of Figure 4.  Here, ‘-b’ 
means item in the same event and only ‘b’ means item in 
different events. So, the length-2 sequential pattern for ‘-b’ is 
<{a b}>:2  and for only ‘b’ is <{a}{b}>:4 and similarly others 
are: <{a}{a}>:2, <{a}{c}>:4, <{a}{d}>:2, <{a}{f}>:2. By 
applying similar process in < {a}> projected FUSP-tree of 
Figure 4, we get the <{a}{a}>, <{a}{b}>-projected FUSP-
trees shown in figure 5 and 6 respectively and so on. But 
<{a}{a}> tree has no frequent item. So, we don’t get any 
sequential pattern from this tree. We can get the length-3 
patterns from <{a}{b}>, <{a}{c}>, <{a b}>, <{a}{d}>, 
<{a}{f}>-projected trees and then we can get length-4 patterns 
by constructing the projected trees from the length-3 prefix 
projected trees and then length-5,6,7 and so on, while header 
tables with frequent items are also found for the corresponding 
projected trees. 
Sub Step 2: By applying Sub Step 1 in Figure 1, we can get 
the <{b}>, <{c}>, <{d}>, <{e}>, <{f}>-projected FUSP-trees 
and their sequential patterns  recursively. 

Sequence ID             Sequence 

10 <{a}{a b c}{a c}{d}{c f}> 
20 <{a d}{c}{b c}{a e}> 
30 <{e f}{a b}{d f}{c}{b}> 

40 <{e}{g}{a f}{c}{b}{c}> 

Length-1 Sequential Patterns Support Count 

a 4 

b 4 

c 4 

d 3 

e 3 

f 3 
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The approach described above generates complete set of 
sequential patterns without creating any candidate set which 
are shown in Table 3. 
 
            

 

 

                         

 

 

 

 

  

<a>:  <{a}>, <{a}{a}>, <{a}{b}>, <{a}{b c}>, 
<{a}{b c}{a}>, <{a}{b}{a}>, <{a}{b}{c}>, <{a 
b}>, <{a b}{c}>, <{a b}{d}>, <{a b}{f}>, <{a 
b}{d}{c}>, <{a}{c}>, <{{a}{c}{a}>, 
<{a}{c}{b}>, <{a}{c}{c}>, <{a}{d}>, 
<{a}{d}{c}>, <{a}{f}> 

<b>:  <{b}>, <{b}{a}>, <{b}{c}>, <{b c}>, <{b 
c}{a}>, <{b}{d}>, <{b}{d}{c}>, <{b}{f}> 

<c>:  <{c}>, <{c} {a}>, <{c} {b}>, <{c} {c}>  

<d>: <{d}>, <{d}{b}>, <{d}{c}>, <{d}{c}{b}> 

<e>: <{e}>, <{e}{a}>, <{e}{a}{b}>, <{e}{a}{c}>, 
<{e}{a}{c}{b}>, <{e}{b}>, <{e}{b}{c}>, 
<{e}{c}>, <{e}{c}{b}>, <{e}{f}>, <{e}{f}{b}>, 
<{e}{f}{c}>, <{e}{f}{c}{b}> 

<f>: <{f}>, <{f}{b}>, <{f}{b}{c}>, <{f}{c}>, 
<{f}{c}{b}> 

 

 

 

 

 

Figure 2: Two Projected Branches for First occurrence of < {a}> 

Table 3: The Resulting Sequential Patterns with prefix  
<a>, <b>, <c>, <d>, <e> and <f> 

Figure 3: Three Projected Branches for Prefix < {a}> 

                                    Figure 1:  FUSP-Tree   of   Table 1 
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IV. PERFORMAANCE ANALYSIS 
Here, we represent a performance comparison of proposed 

Tree based sequential pattern mining approach with GSP and 
PrefixSpan for two datasets. All the experiments were 
conducted on a 2.27-GHz Intel coreTM i3-330 processor with 
3GB main memory, running on Microsoft Windows 7. All the 
programs were written in NetBeans IDE 7.0 M2 with JDK 5. 
We did not directly compare our data with those in some 
published reports running on different machines. Instead, we 
also implemented GSP and PrefixSpan algorithms to the best 
of our knowledge based on the published reports on the same 
machine and compared in the same running environment. 

A. Datasets 
We have used two datasets, Mushroom [9] and Chess [9] 

for evaluation of experimental results. Usually these datasets 
are used for generating frequent patterns, since in our study we 
are working on sequential pattern mining, so we have  used  
these datasets by considering each transaction as a sequence 
and each item of the transaction as a single item element in 
that sequence. Obviously, while considering these datasets for 
sequential pattern mining, they will also generate long 
sequential patterns. The Properties of these datasets, in terms 
of the number of distinct items, the number of sequences, the 
maximum sequence size, and the average sequence size, are 
shown below by a Table 4.  

 
Table 4: Properties of Experimental Datasets 

 

Dataset Items No. of 
Sequences 

Max 
Size 

Avg 
Size 

Mushroom 119 8124 23 23.0 
Chess 75 3196 37 37.0 

 

Figure 4: The < {a}> Projected Tree and its Corresponding 
Header Table 
 

        Figure 5 : <{a}{a}> Projected Tree 

 Figure 6 : <{a}{b}> Projected Tree and its Corresponding Header Table 
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B. Experimental Result 
Comparisons between GSP, PrefixSpan and Tree based 

mining algorithm for different minimum support threshold 
values for these datasets are shown below:  

 

  
 
  
 
 
 
  

  
 
 
 
 
 
 

 
 

  

 

 
 

 

 

The experimental results shown in Figure 7 and 8 are depicted 
to show the execution time of the three algorithms at different 
support thresholds.  It can be observed from Figure 7 and 8 
that, the execution times maintain the order “Tree based 
approach < PrefixSpan < GSP” when Chess and Mushroom 
datasets are used respectively. Thus, we can conclude that, our 
Tree based sequential pattern mining approach performs much 
better than GSP algorithm and also our approach better than 
PrefixSpan. This is also to be mentioned that, the proposed 
Tree based approach generates same number of sequential 
patterns for different minimum support thresholds as 
generated by GSP and PrefixSpan algorithms that are shown 
in Figure 9 and 10. 

V. CONCLUSION 
In this paper, a Tree based sequential pattern mining 

algorithm is proposed, where a large tree is recursively 
projected into a set of small projected trees and grows 
sequential patterns in each projected tree by exploring only 
locally frequent fragments. This algorithm mines the complete 
set of sequential patterns without generating any candidate 
sequences. So, it reduces the effort of candidate sequences 
generation. Links stored in the FUSP-tree help it to find the 
frequent items easily without scanning each projected trees. 
So, it also reduces the repeated scanning of database. A 
comprehensive performance study shows that, for static 
databases, this algorithm always outperforms GSP which is 
apriori based and it also outperforms pattern growth based 
PrefixSpan algorithm.  In this study, we have designed our 
method to work only for static datasets and as shown above, 
we have achieved satisfactory outcome. But scopes are there 
to improve the algorithm to handle the dynamic databases. In 
future study, we will extend our algorithm for dynamic 
databases and hope it will give better performance than GSP 
and PrefixSpan. 

 

 

Figure 7: Comparisons between execution time  and 
minimum support for Chess dataset 

         Figure 8: Comparisons between execution  
         time and minimum support for Mushroom dataset 

 

Figure 9: Comparisons between No. of Sequential Patterns 
and Minimum Support for Chess dataset. 
 

Figure 10: Comparisons between No. of Sequential Patterns 
and Minimum Support for Mushroom dataset. 
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