
IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.6, December 2012

1188

Tree Based Sequential Pattern Mining

Ashin Ara Bithi
Dept. of Computer Science & Engineering

University of Dhaka

Manira Akhter
Dept. of Computer Science & Engineering

University of Dhaka

Abu Ahmed Ferdaus
Assistant Professor

Dept. of Computer Science & Engineering
University of Dhaka

Abstract— Sequential pattern mining is an important research
area in data mining field for extracting useful knowledge from
sequence databases. In this paper, we have proposed a Tree
based sequential pattern mining algorithm which can generate
sequential patterns from the fast updated sequential pattern tree
(called FUSP-tree) structure by recursively creating set of small
trees from the large tree. FUSP-tree stores complete set of
sequences with only frequent items, their frequency and links for
the given sequence database. So, it can generate the complete set
of sequential patterns without generating any unnecessary
candidate sequences and without repeated scanning the original
databases. We have compared our proposed approach with two
state-of-the-art algorithms and our performance study shows that,
for static datasets, Tree based sequential pattern mining
algorithm is much faster than existing apriori based GSP
algorithm and it is also faster than existing PrefixSpan
algorithm which is pattern growth approach.

Keywords: Sequential Pattern, Data Mining, FUSP-tree,
Sequence Database, Frequent Pattern.

I. INTRODUCTION
Sequential pattern mining in transactional databases plays

an important role in data mining field. Sequential pattern
mining means discovering all the frequently occurring ordered
events or subsequences from sequence databases. Sequential
pattern mining is widely used in the analysis of customer
shopping behavior, web access patterns, in the analysis of
biological sequences, sequences of events in science and
engineering, and in natural and social developments. Agrawal
and Srikant first introduced sequential pattern mining in 1995
[1]. Based on their study, sequential pattern mining is stated as
follows: “Given a sequence database or a set of sequences
where each sequence is an ordered list events or elements and
each event or element is a set of items, and given a user-
specific minimum support threshold or min_sup, sequential
pattern mining is the process of finding the complete set of
frequent subsequences, that is, the subsequences whose
occurrence frequency in the set of sequences or sequence
databases is greater than or equal to min_sup.” Past studies
developed two major classes of sequential pattern mining
methods. First class proposed several mining algorithms [1]
[2] [3] based on apriori property which states that, every
nonempty subsequences of a sequential pattern are also a
sequential pattern. Among them, GSP [2] and SPADE [3] are
most efficient apriori- based algorithms. Both of them find all
sequential patterns by using level-wise candidate sequences
generate and test approach which increases the time and space
complexity. Another class proposed algorithms like FreeSpan
[4] and PrefixSpan [5] based on pattern growth approach.
Pattern growth approach does not generate any candidate

sequences like apriori based methods GSP and SPADE, but it
creates lots of projected databases and each time it needs to
scan the projected databases to find the frequent items. In this
paper, we present a Tree based sequential pattern mining
algorithm which mines the patterns from the tree structure.
This algorithm first generates a FUSP-tree which is proposed
by Lin in 2008 [6], from original sequence database to store
only frequent items. For this reason, the large database is
compressed into a smaller data structure. When frequent items
are not changed, the approach doesn’t need to rescan the
original database once the tree is created and can get the
results only from the tree. Then, it recursively projects the
FUSP-tree into a set of smaller projected trees based on the
current sequential patterns and sequential patterns are grown
by exploring only locally frequent fragments in each projected
tree. It finds all sequential patterns without generating any
candidate sequence and links stored in the FUSP-tree help it to
find the frequent items easily without scanning each projected
trees.

In the rest of the paper, section II describes related works;
section III introduces our concept of Tree based mining with
an example. Performance analysis is shown in section IV and
finally section V draws conclusion that points out the
potentiality of our work.

II. REVIEW OF WORKS
We have studied a set of mining approaches to understand

the effectiveness of pattern discovery in data mining field.
Some of them are described sequentially in this section.

A. FP-Growth Algorithm
FP Growth algorithm [7] was proposed by Han, Pie & Yin

in 2000 to mine the frequent patterns from the tree structure
without candidate set generation. They proposed two novel
algorithms, one is FP-tree construction algorithm to keep the
large database in a compact form and another is FP-growth
algorithm to mine the frequent patterns from the FP-tree. FP-
tree structure is a compress tree structure which stores only
frequent items in the tree. The construction process of the FP-
tree was subdivided into two parts. First, it scans the original
database to find the frequent items and their support-count,
after that; it scans again the database from first transaction to
last to construct the tree. The links between parent node and
child node are singly directed. A header table was also kept to
store the frequent items and the links to the first occurrence of
those items into the tree. After the tree is completed, the actual
mining algorithm (FP-growth) is initiated to find the frequent

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.6, December 2012

1189

patterns recursively from the tree. The recursive process is
started from the lowest frequent items in the header table.

B. GSP Algorithm
GSP (Generalized Sequential Patterns) [2] is a sequential

pattern mining algorithm which was proposed by Srikant and
Agrawal in 1996. GSP is an Apriori based algorithm. It
generates lots of candidate sets and it tests them by multiple
passes. The algorithm to find the sequential patterns is
outlined as follows: First, it scans the database to find the
frequent items, that is, those with equal or greater than
minimum support. All of those frequent items are length-1
frequent sequences. Second, each of them starts with a seed
set of sequential patterns to generate new potentially
sequential patterns, called candidate sequences. Each
candidate sequence contains more than one item from which
pattern it is generated. The length of each sequence is the
number of instances of items in a sequence. All of the
candidate sequences have the same length in a given pass. To
find the frequent sequence, the algorithm then scans the
database and discards those candidates which are infrequent.
Finally, after getting the frequent sequences it makes those
sequences as the seed for the next pass. The algorithm
terminates, when there are no frequent sequences at the end of
a pass, or when there are no candidate sequences generated.

C. PrefixSpan Algorithm
PrefixSpan [5] is a projection-based, sequential pattern-

growth approach for efficient and scalable mining of
sequential patterns, which is an extension of FP-growth [7].
Unlike apriori-based algorithms it does not create large
number of useless candidate sets and generates complete set of
sequential patterns from large databases efficiently. The major
cost of PrefixSpan is database projection, i.e., forming
projected databases recursively. To find the sequential
patterns, PrefixSpan recursively projects a sequence database
into a set of small projected databases and sequential patterns
are grown in each projected database by exploring only locally
frequent fragments. In this approach, sequential patterns from
sequence database can be mined by a prefix-projection method
in the following steps: (1) Find length-1 sequential patterns.
Scan database once to find all the frequent items in sequences.
Each of these frequent items is a length-1sequential pattern.
(2) Divide search space. The complete set of sequential
patterns can be partitioned according to the number of length-
1 sequential patterns (prefixes) found in step-1. (3) Find
subsets of sequential patterns. The subsets of sequential
patterns can be mined by constructing the corresponding set of
projected databases and mining each recursively.

III. PROPOSED APPROACH
Here we have proposed our Tree based sequential pattern

mining approach which is based on FUSP-tree structure. Our
objective is to find the sequential patterns from the tree by
generating set of small projected trees from the large tree
recursively. For understanding about the FUSP-tree, a brief
overview of this tree structure is given below:

A. FUSP Tree Strucure
To efficiently mine the sequential patterns, Lin et al.2008

proposed the FUSP-tree [6] structure and its maintenance
algorithm. FUSP-tree consists of one root node labeled as
‘root’ and a set of prefix subtrees as the children of the root.
Each node in the prefix subtrees contains item-name; which
represents the node contains that item, count; the number of
sequences represented by the section of the path reaching the
node, and node-link; links to the next node of that item in the
next branch of the FUSP-tree. The FUSP-tree contains a
Header-Table which store frequent item, their count and the
link of first occurrence in the tree of that item. This table helps
to find appropriate items or sequences in the tree. The
construction process is similar to FP-tree [7] i.e. the
construction process is executed tuple by tuple from first
sequence to last. But the differences from FP-tree are, the link
between two nodes is symbolized by‘s’ or ‘i’ as like IncSpan
[8]. Here, symbol ‘s’ indicates the sequence relation between
two different events in a sequence and symbol ‘i’ indicates the
itemset relation between two items in a event and also the
links are bidirectional which will help to update process easier.
For example, in Table 1 sequence database, the first sequence
is “10: < {a}{a b c}{a c}{d}{c f}>”. This sequence has five
events or elements, namely {a}, {a b c}, {a c}, {d}, {c f}.
First event contain only one item {a}. Item {a} is the first
node < a: 1> of the tree which is linked as a child of the root
and the link between root and first node is marked as ‘s’.
Second event contains three items. So, for this event, there are
three nodes <a: 1>, <b: 1>, < c: 1>. Node <a: 1> is linked to
the first node <a: 1 > of the tree and the link between them is
marked as ‘s’. Node <b: 1> is linked with second node <a: 1 >
and node <c: 1> is linked to node <b: 1 >. Both links between
node <a: 1> and<b: 1>, and, node<b: 1> and <c: 1> are
marked as ‘i’ respectively. This four nodes also store in the
Header-Table. In this similar way, the whole tree is
constructed. The FUSP-tree for the Table 1 sequence database
is shown in Figure 1.

B. The Algorithm
1) Notation

Here, k = Length of sequential pattern, α = Sequential

pattern, s = Label of edge between two different events, i =
Label of edge between two items in the same event, f =
Frequent item.

2) The Proposed Algorithm

The details of the proposed Tree based sequential pattern
mining algorithm are described as a pseudo code below:

Input: A sequence database which contains customer-id and
customer sequence and a minimum support threshold
min_support.

Output: The complete set of sequential patterns.

Algorithm: (Tree Based Sequential Pattern Mining)

Step 1: Scan the sequence database to find length-1 sequential
patterns and their counts.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.6, December 2012

1190

Step 2: Construct the FUSP-tree and its corresponding header
table. The construction process is described above in this
section.

Step 3: Call, Tree Based Sequential Pattern Mining (FUSP-
tree, k, Header-Table)
{

 for each length-k sequential pattern α from header table

 {

 Generate new projected FUSP-tree and header table with new frequent
item f;

 for each edge which prefix is α of the old FUSP-tree

 {

 if the label of the edge is ‘s’ then

 Append (f) to the α to form the new (k+1) sequential pattern α/;

 else if the edge label is ‘i’ then

 Assemble f to the last event of α to form new (k+1) sequential pattern
α/;
 Print α/;

 }

 Call, Tree Based Sequential Pattern Mining (new FUSP-tree, k+1, new
header table);

}

 }

C. An Example
For proper understanding of our proposed approach,

in this section, we will try to describe our algorithm step
by step with the help of an example. As for input, our
algorithm just takes a sequence database and minimum
support threshold, min_support.

 Table 1: Sequence Database [5]

In our example, we have used the above sequence database
which is shown in Table 1 and we can see that, the table
contains four sequences and seven items which are: {a, b, c, d,
e, f, g}. And let the minimum support is 50% means for four
sequences, the minimum support is (4*0.5) = 2.

Table 2: Length-1 Patterns and Their Support Counts

The
algorit
hm’s
steps are described below using the above database:
Step1: Scan the sequence database shown in Table 1 to find
the length-1 sequential patterns and their counts. After this
step we get the length-1 sequential patterns. The length-1
sequential patterns and their corresponding counts are given in
Table 2.
Step 2: Again scan the sequence database to create the FUSP-
tree and the Header Table. We have described the construction
process of FUSP-tree above in this section using the same
database. After this step we get the final FUSP-tree which is
shown in Figure 1.
Step 3: After the FUSP-tree is constructed, the mining process
will be executed to get the sequential patterns from the tree.
The mining process is briefly described below:
Sub Step1: From the header table we first pick the top prefix
item <{a } > and by using its link we find the first occurrence
of that item in the FUSP-tree. From the Figure 1 we see that
first occurrence of <{a} > has two child nodes, so we get two
branches which are shown in figure 2. From the first node of <
{a} >, we get the next link for the same item’s node and
through this node we get another branch, so we get three
branches for prefix < {a}> which are shown in Figure 3 and
by this way we get all the branches of the new projected tree
prefixed with < {a}> which are shown in Figure 4. All the
length-2 sequential patterns for < {a}>-projected tree are
found by concatenation of prefix < {a}> with the frequent
sequences shown in the Header Table of Figure 4. Here, ‘-b’
means item in the same event and only ‘b’ means item in
different events. So, the length-2 sequential pattern for ‘-b’ is
<{a b}>:2 and for only ‘b’ is <{a}{b}>:4 and similarly others
are: <{a}{a}>:2, <{a}{c}>:4, <{a}{d}>:2, <{a}{f}>:2. By
applying similar process in < {a}> projected FUSP-tree of
Figure 4, we get the <{a}{a}>, <{a}{b}>-projected FUSP-
trees shown in figure 5 and 6 respectively and so on. But
<{a}{a}> tree has no frequent item. So, we don’t get any
sequential pattern from this tree. We can get the length-3
patterns from <{a}{b}>, <{a}{c}>, <{a b}>, <{a}{d}>,
<{a}{f}>-projected trees and then we can get length-4 patterns
by constructing the projected trees from the length-3 prefix
projected trees and then length-5,6,7 and so on, while header
tables with frequent items are also found for the corresponding
projected trees.
Sub Step 2: By applying Sub Step 1 in Figure 1, we can get
the <{b}>, <{c}>, <{d}>, <{e}>, <{f}>-projected FUSP-trees
and their sequential patterns recursively.

Sequence ID Sequence

10 <{a}{a b c}{a c}{d}{c f}>
20 <{a d}{c}{b c}{a e}>
30 <{e f}{a b}{d f}{c}{b}>

40 <{e}{g}{a f}{c}{b}{c}>

Length-1 Sequential Patterns Support Count

a 4

b 4

c 4

d 3

e 3

f 3

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.6, December 2012

1191

The approach described above generates complete set of
sequential patterns without creating any candidate set which
are shown in Table 3.

<a>: <{a}>, <{a}{a}>, <{a}{b}>, <{a}{b c}>,
<{a}{b c}{a}>, <{a}{b}{a}>, <{a}{b}{c}>, <{a
b}>, <{a b}{c}>, <{a b}{d}>, <{a b}{f}>, <{a
b}{d}{c}>, <{a}{c}>, <{{a}{c}{a}>,
<{a}{c}{b}>, <{a}{c}{c}>, <{a}{d}>,
<{a}{d}{c}>, <{a}{f}>

: <{b}>, <{b}{a}>, <{b}{c}>, <{b c}>, <{b
c}{a}>, <{b}{d}>, <{b}{d}{c}>, <{b}{f}>

<c>: <{c}>, <{c} {a}>, <{c} {b}>, <{c} {c}>

<d>: <{d}>, <{d}{b}>, <{d}{c}>, <{d}{c}{b}>

<e>: <{e}>, <{e}{a}>, <{e}{a}{b}>, <{e}{a}{c}>,
<{e}{a}{c}{b}>, <{e}{b}>, <{e}{b}{c}>,
<{e}{c}>, <{e}{c}{b}>, <{e}{f}>, <{e}{f}{b}>,
<{e}{f}{c}>, <{e}{f}{c}{b}>

<f>: <{f}>, <{f}{b}>, <{f}{b}{c}>, <{f}{c}>,
<{f}{c}{b}>

Figure 2: Two Projected Branches for First occurrence of < {a}>

Table 3: The Resulting Sequential Patterns with prefix
<a>, , <c>, <d>, <e> and <f>

Figure 3: Three Projected Branches for Prefix < {a}>

 Figure 1: FUSP-Tree of Table 1

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.6, December 2012

1192

IV. PERFORMAANCE ANALYSIS
Here, we represent a performance comparison of proposed

Tree based sequential pattern mining approach with GSP and
PrefixSpan for two datasets. All the experiments were
conducted on a 2.27-GHz Intel coreTM i3-330 processor with
3GB main memory, running on Microsoft Windows 7. All the
programs were written in NetBeans IDE 7.0 M2 with JDK 5.
We did not directly compare our data with those in some
published reports running on different machines. Instead, we
also implemented GSP and PrefixSpan algorithms to the best
of our knowledge based on the published reports on the same
machine and compared in the same running environment.

A. Datasets
We have used two datasets, Mushroom [9] and Chess [9]

for evaluation of experimental results. Usually these datasets
are used for generating frequent patterns, since in our study we
are working on sequential pattern mining, so we have used
these datasets by considering each transaction as a sequence
and each item of the transaction as a single item element in
that sequence. Obviously, while considering these datasets for
sequential pattern mining, they will also generate long
sequential patterns. The Properties of these datasets, in terms
of the number of distinct items, the number of sequences, the
maximum sequence size, and the average sequence size, are
shown below by a Table 4.

Table 4: Properties of Experimental Datasets

Dataset Items No. of
Sequences

Max
Size

Avg
Size

Mushroom 119 8124 23 23.0
Chess 75 3196 37 37.0

Figure 4: The < {a}> Projected Tree and its Corresponding
Header Table

 Figure 5 : <{a}{a}> Projected Tree

 Figure 6 : <{a}{b}> Projected Tree and its Corresponding Header Table

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.6, December 2012

1193

B. Experimental Result
Comparisons between GSP, PrefixSpan and Tree based

mining algorithm for different minimum support threshold
values for these datasets are shown below:

The experimental results shown in Figure 7 and 8 are depicted
to show the execution time of the three algorithms at different
support thresholds. It can be observed from Figure 7 and 8
that, the execution times maintain the order “Tree based
approach < PrefixSpan < GSP” when Chess and Mushroom
datasets are used respectively. Thus, we can conclude that, our
Tree based sequential pattern mining approach performs much
better than GSP algorithm and also our approach better than
PrefixSpan. This is also to be mentioned that, the proposed
Tree based approach generates same number of sequential
patterns for different minimum support thresholds as
generated by GSP and PrefixSpan algorithms that are shown
in Figure 9 and 10.

V. CONCLUSION
In this paper, a Tree based sequential pattern mining

algorithm is proposed, where a large tree is recursively
projected into a set of small projected trees and grows
sequential patterns in each projected tree by exploring only
locally frequent fragments. This algorithm mines the complete
set of sequential patterns without generating any candidate
sequences. So, it reduces the effort of candidate sequences
generation. Links stored in the FUSP-tree help it to find the
frequent items easily without scanning each projected trees.
So, it also reduces the repeated scanning of database. A
comprehensive performance study shows that, for static
databases, this algorithm always outperforms GSP which is
apriori based and it also outperforms pattern growth based
PrefixSpan algorithm. In this study, we have designed our
method to work only for static datasets and as shown above,
we have achieved satisfactory outcome. But scopes are there
to improve the algorithm to handle the dynamic databases. In
future study, we will extend our algorithm for dynamic
databases and hope it will give better performance than GSP
and PrefixSpan.

Figure 7: Comparisons between execution time and
minimum support for Chess dataset

 Figure 8: Comparisons between execution
 time and minimum support for Mushroom dataset

Figure 9: Comparisons between No. of Sequential Patterns
and Minimum Support for Chess dataset.

Figure 10: Comparisons between No. of Sequential Patterns
and Minimum Support for Mushroom dataset.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.6, December 2012

1194

REFERENCES

[1] Agrawal R and Srikant R, “Mining Sequential Patterns”, in Int'l. Conf.
Data Engineering (ICDE 95), pp.3-14, 1995.

[2] Srikant R, Agrawal R: “Mining Sequential Patterns: Generalizations and
Performance Improvements”, in Int'l Conf Extending Database
Technology. Springer pp.3-17, 1996.

[3] M. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent
Sequences,” Machine Learning, vol. 40, pp. 31-60, 2001.

[4] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C.
Hsu,“FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining,”
Proc. 2000 ACM SIGKDD Int’l Conf. Knowledge Discovery in
Databases (KDD ’00), pp. 355-359, Aug. 2000.

[5] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-
C. Hsu, “PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-
Projected Pattern Growth,” Proc. 2001 Int’l Conf. Data Eng. (ICDE ’01),
pp. 215-224, Apr. 2001.

[6] C. W. Lin, T. P. Hong, Wen-Hsiang Lu and Wen-Yang Lin, “An
Incremental FUSP-Tree Maintenance Algorithm,” The Eighth
International Conference on Intelligent System Design and Application,
pp.445-449,2008.

[7] J. Han, J. Pei and Y. Yin, “Mining Frequent Patterns without Candidate
Generation,” The 2000 ACM SIGMOD International Conference on
Management of Data, pp. 1-12, 2000.

[8] H. Cheng, X. Yan and J. Han, “Incspan: Incremental Mining of
Sequential Patterns in Large Database,” The ACM SIGKDD
international conference on Knowledge discovery and data mining,
pp.527-532, 2004.

[9] Web link: Frequent Itemset Mining Implementations Repository
http://fimi.cs.helsinki.fi/ (last accessed on 19 December, 2012)

