
IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol.7, No.4, July-August 2017

 47

BOEHM-Waterfall Methodology: Issues and
Challenges

Alhassan Mohammed Baba
Computer Science Department

Nigerian Defence Academy
Kaduna, Nigeria

Ogwueleka Francisca Nonyelum
Computer Science Department

Nigerian Defence Academy
Kaduna, Nigeria

Abstract—The successes of majority of software development
ventures are linked to the methods deployed in creating them.
There are several models for building various kinds of software
projects such as waterfall, spiral, iterative and rapid prototyping.
However, Boehm-waterfall model is one type of software
engineering methods deployed majorly for large-scale software
projects in government and companies. The main idea is early
planning to minimize design shortcomings before full-scale
development. This paper examined the challenges and issues
associated with waterfall model, and appropriate
recommendations are made.

Keywords-Boehm-waterfall; software development; software
projects; software engineering; spiral models; iterative models

I. INTRODUCTION
Standish group in 2009 reports revealed that only one-third

of software projects could be considered successful [1]. This
implies that software projects’ failure rate remains
unacceptably high, which could be attributed to the increased
complexity of software development projects besides the
absence or the poorly applied risk management process. In
order to achieve project success, we believe that the best way to
manage risks in software projects is to select the most suitable
methodology that best fits the intended project, and to consider
it during the development process as a means to manage risks.

A software engineering methodology or a software
development process model is a style to the Software
Development Life Cycle (SDLC) that explains the sequence of
steps to be followed while developing software projects [2],
[3]. According to [2], SDLC models are techniques for
designing, building, and maintaining information and industrial
systems. Many software development methodologies exist,
varying from each other in terms of time to release, quality, and
risk management. Regardless of the followed methodology, the
basic lifecycle activities are included in all lifecycle models,
but probably in different orders. These models might be
sequential (waterfall) or iterative (evolutionary). They might be
specification-driven (waterfall), code-driven (evolutionary), or
risk-driven (spiral). Moreover, they might be conventional
(traditional waterfall) or agile (scrum).

Barry Boehm’s assertion of software development model is
to present a highly evocative and intuitive image of entire
project before they are realised [4]. In fact, there is no ideal

model that fits all the software development projects; in certain
circumstances, each model has its advantages and
disadvantages. Deciding upon the methodology to follow
depends on the development environment, the type of the
project underdevelopment, the development team, and the
potential risks. Thus, it falls on the developer to select the
methodology (or any customized combination) that best fits the
project circumstances [5].

After its creation in the late 1950s, software systems have
intensely progressed in terms of size, complexity, presence and
importance. Consequently, through this evolution, different
issues related to the development of software have emerged.
One of the most common critiques is the appreciation about
how unpredictable software projects are. Software engineering
emerged as a discipline in 1968 at the NATO Software
Engineering Conference, and has been review mechanisms to
address the challenges of increasing software size and
complexity [5].

Efforts have covered a wide range of categories including
improvements in programming languages, development
techniques, development tools and development
methodologies. The waterfall model, one of the first software
development methodologies developed in the 1970s, is one of
the most remarkable examples of engineering applied to
software [6]. One of the most important contributions of this
model was the creation of a culture of thinking before coding.
In the 1980’s, and in the absence of other approaches, this
model became a development standard. This model, with some
variations, is still widely used in the software industry today
[6].

II. REVIEW OF RELATED STUDIES
Waterfall model consists of five stages to be accomplished

one after the other in order to a turn out a software product [7].
Bassil [7] identified challenges of software project SDLC such
as significant budget overruns, late or suspended deliveries and
dissatisfactions of customers. These were attributable to
inability of project managers to effectively allocate optimal
team members and resources to diverse activities of SDLC. In
addition, certain stages of SDLC are idle because of
insufficient resources and while others have surplus resources
are idle, bringing about shortcoming between arrival and
delivery of projects.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol.7, No.4, July-August 2017

 48

Few scholars undertook the comparisons of cost, duration,
and software modelling methods. Dash and Dash [8] discussed
the waterfall model and its exposure to risks throughout the
SDLC. Ruparelia [3] reviewed the most popular software
development process models in terms of the application types
each fits. Munassar and Govardhan [9] conducted a
comparative study between the dominant methodologies,
illustrated their phases, advantages and disadvantages, and
how they differ from each other. Hijazi et al. [10] identified
that the choice of methodology is connected with the several
factors, because it helps in determining and assessing risky
projects. The author considered several methodologies and the
degree to which each methodology supports risk management.
The work investigated the state of risk and risk management in
the most popular software development process models (that
is, waterfall, v-model, incremental development, spiral, and
agile development). Munassar and Govardhan [9] examine the
area of software development through the development
models known as software development life cycle. Authors
selected five of the development models namely; waterfall,
Iteration, V-shaped, spiral and extreme programming in order
to analyse their advantages and disadvantages. The study
represents different models of software development and
makes a comparison between them to show the features and
defects of each model.

III. ANALYSIS OF WATERFALL MODEL
In the past four decades, software has progressed to a

complete product from an initial tool used for solving a
problem or evaluating information of from problem to solution.
Though, the initial programming stages have built-in numerous
of problems turning software, which is an impediment to most
software development, especially those requiring computers to
arrive at solutions. Software comprises of documents and
programs collection that have been established to be a part of
software engineering procedures. In addition, the goal of
software engineering is to generate suitable work plan that
builds programs of high quality as shown in Figure 1.

Figure 1. Generic concept of software development process [9].
In Figure 1, the concept can be referred to as abstract

denotation of a software process model that encompasses
specification, design, validation and evolution. In 1970, Royce
was first to introduce water model in an informal style. It
abstracts the important software development activities

(requirements, analysis, design, coding, testing, and operation)
in a sequential manner [11]. Waterfall development was
proposed to avoid the risks introduced by the code and fix
technique by inserting the requirements and analysis stages
before the coding stage. This ensures that user’s requirements
are clearly defined in advance; as it reduces the time and effort
misused on several iterations of code and fix.

In the original waterfall model, any error happening at any
stage propagates into the successive stages until it is
discovered in the testing phase lately. To avoid this risk,
Royce [11] suggested that at the beginning of each stage, a
review to the previous stage should be conducted to ensure
that the previous stage was properly done. Later, Boehm
modified the original waterfall model by adding localized
iterations that provide feedback to the preceding phases as
shown in Figure 2.

Figure 2. Boehm’s waterfall model [12].
Nevertheless, even with these localized iterations, problems
are still being revealed in the testing stage, which are usually
attributed to glitches in the requirements phase or in the design
phase. Thus, to recover from these errors, complex iterations
to the requirements phase and to the design phase were added.
These iterations consume a lot of time, efforts, and other
resources.

In order to avoid the risks of the operational constraints,
Royce [11] suggested a preliminary design phase to be
interleaved between the requirements phase and analysis phase
in order to impose constraints on the analysts. This is
accurately accomplished by the iterative loop between the
preliminary design and the analysis stages until an adequate
preliminary design is attained [10].

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol.7, No.4, July-August 2017

 49

One classical model of software engineering is known as
waterfall model. This model is one of the oldest models and is
widely used in government projects and in many major
companies [9]. As this model emphasizes planning in early
stages, it ensures design flaws before they develop. In
addition, its intensive document and planning make it work
well for projects in which quality control is a major concern.
The pure waterfall lifecycle consists of several non-
overlapping stages, as shown in Figure 3.

Figure 3. Waterfall software development model [9].

The model begins with establishing system requirements
and software requirements and continues with architectural
design, detailed design, coding, testing, and maintenance. The
waterfall model serves as a baseline for many other lifecycle
models as shown in Figure 3 [9].
There are two variants of waterfall models of software
development process namely pure and modified [9]. The pure
waterfall model performs well for products with clearly
understood requirements or when working with well-
understood technical tools, architectures and infrastructures as
shown in Figure 3. Its weaknesses frequently make it
inadvisable when rapid development is needed. In those cases,
modified models may be more effective. Modified waterfall
model makes use of similar as though the pure waterfall
model, except that it is based on a discontinuity approach. It
may involve overlapping and splitting of subprojects
whenever necessary during architectural and detailed designs
as shown in Figure 4.

The strengths over pure model include flexibility, phase
continuity for project staff, reduced documentation and ease of

implementation. However, ambiguity of milestone is higher;
miscommunication for parallel activities are unseen
interdependencies are major worry for experts [6].

Figure 4: Pure waterfall model [13].

Figure 4: Pure waterfall model [13].

A. Features of Waterfall Model
Aside being a classical model of software engineering, it is

one of the ancient and commonly used models in government
projects and foremost companies. It underscores early stages
planning; it identifies design flaws before embarking on
development. More so, it supports thorough documentation
and planning which advantageous for quality control issues in
software projects. The modelling process kick starts with
system and software requirements, progress through the
architectural design, detailed design, coding, testing, and
maintenance phases.

• Highpoints: It is easy to realize and implement. It

underpins good practice such as define-before-design,
and design-before-code. It ascertains milestones and
deliverables, document driven, published
documentation standards, effective for established
products and inexperience projects teams.

• Low-points: The conceptual frameworks of projects
may not be realized in real world situations. It is
unsupportive of iterative characteristic of exploratory
development. More importantly, there is no possibility
of attaining precise requirements in the early stages of
project lifecycle. Often, delays in detecting serious
flaws can result in late project delivery. There is no
potential of risk management integration. Changes to
projects documentations are largely costly. The costs
incurred by this model considering small teams and
projects. There is substantial overhead of
administration [14].

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol.7, No.4, July-August 2017

 50

B. Description of Software Development Process Phases
The details of common phases of software development

process include: [6], [14].

• System Requirements: It determines the components
for building the system, including the hardware
requirements, software tools, and other necessary
components. Examples include decisions on hardware,
such as plug-in boards (number of channels,
acquisition speed, and so on), and decisions on external
pieces of software, such as databases or libraries.

• Software Requirements: It determines the
expectations for software functionality and identifies
which system requirements the software affects.
Requirements analysis includes determining interaction
needed with other applications and databases,
performance requirements, user interface requirements,
etc.

• Architectural Design: This establishes the software
framework of a system to meet the specific
requirements. This design defines the major
components and the interaction of those components,
but it does not define the structure of each component.
The external interfaces and tools used in the project
can be determined by the designer.

• Detailed Design: This examines the software
components defined in the architectural design stage
and produces a specification for how each component
is implemented.

• Coding: Implements the detailed design specification.

• Testing: Determines whether the software meets the
specified requirements and finds any errors present in
the code.

• Maintenance: Addresses problems and enhancement
requests after the software releases.

In certain organizations, a change control board maintains
the quality of the product by reviewing each change made in
the maintenance stage. Consider applying the full waterfall
development cycle model when correcting problems or
implementing these enhancement requests.

C. Risks Issues and Challenges of Waterfall Models
It is obvious that risks in the waterfall model are unavoidable,
even in the Royce’s modified waterfall model. This is due to
the nature of the model itself which are identified as follows:
[11]

• Unbroken change of Requirements: The major risk
factor threatens the waterfall projects is the continuous
requirements change during the development process.
The waterfall model cannot accommodate with these
changes due to its strict structure. The waterfall model
requires that all requirements be clearly defined in
advance in the requirements stage in order to guarantee
that no change could appear later on during the

development process. Clearly, this is an idealistic
situation, since it is difficult for the real projects to
identify all requirements previously. Thus, it is even
impossible to guard requirements from being changed.
Actually, continuous requirements change is not a
problem to be solved, neither it is restricted exclusively
to the waterfall model. Rather, it is the unstable nature
of the software projects besides the highly strict nature
of the waterfall model what made its consequences
significant in the waterfall model mainly.

• Stages Overlaps are Non-existent: Another source of
risk in the waterfall model is that it requires each stage
to be completed entirely before proceeding into the
subsequent phase. In other words, it does not allow
overlapping between stages. Obviously, this will waste
time, cost and other resources, since the stages in the
waterfall model are relatively long. Hence, most team
members who are responsible for specific stages will
spend most of their time waiting for other stages to
complete so that they can start doing their work.

• Quality Assurance is Poor: Lack of quality assurance
during the different phases of the development process
is another source of risk. Validating the product is
restricted to a single testing phase lately in the
development process. Hence, the testing phase in the
waterfall model is the highest risky phase, since it is
the last stage wherein the system is put as a subject for
testing. Thus, all problems, bugs, and risks are
discovered too late when the recovering from these
problems requires large network, which consumes
time, cost, and effort.

• Stages are Long Walkthroughs: Another source of risk
in this model resides in the relatively long stages,
which makes it difficult to estimate, time, cost, and
other resources required to complete each stage
successfully. Moreover, in the waterfall model, there is
no working product until late in the development
process when the product is almost complete and any
change is impossible. The worst scenario can be
illustrated when the product failed to meet end users’
hopes.

D. Potential Solutions to the Problems Identified
• There is need to reduce the number of stages and

phases leading up to final product, which can achieve
quicker and faster prototyping of engineering
products before delivery. This enables product
consumers and users to have first-hand experience of
project being developed. In addition, incidences of
project failures arising from inadequate capturing of
users’ requirements can be minimized accordingly.

• There is need to layout quality assurance standards
and requirements for each phase and stage of product
development appropriately. This should include
individual stage and unit testing to improve on the
software product quality when it was finally
delivered. The goal is to reduce errors and time of

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol.7, No.4, July-August 2017

 51

delivery attributed to long scheduled phase of
debugging and testing.

• The recent advancements in technology have
increased the possibility of team members of software
projects to collaborate and perform different and
similar tasks from different locations at the same
time. This can be achieved through overlapping of
stages and phases of software product development.
Therefore, there is need to have a well-structured
layout of activities and tasks for software project
throughout all the stages from the commencement to
delivery. Such documents guide different team
members in working independently from others on
similar or different stages of project lifecycle.

• Flexibility is a unique feature of modern software
projects. The needs and requirements of end users
and consumers continue to change under different
experiences and conditions whenever they come
across it by rapid prototyping and product
visualization methods. The designed can be modified
in manner to continue to accommodate fresh
requirements and concerns of the product consumers
at any levels or stages of product development. The
outcome is efficient, less errors, timely and useful
product.

IV. CONCLUSION
The research paper has reviewed one of the leading

software engineering process models and identified the risks
issues and challenges. The papers suggested management of
these issues identified with waterfall model. It found that
certain software development methods such as waterfall model
intrinsically encompass risks management, which implies that
risks are inevitable in most software engineering processes, and
all software development methodologies, including the risk-
driven ones, require that risk management be enhanced in it.
An interesting dimension for future research is to find out a
strategy that aims at minimizing risk issues and challenges in
the different software development methodologies including
waterfall. A risk reduction spiral is added to the top of the
Waterfall to decrease risks prior to the waterfall phases. The
waterfall can be modified using options such as prototyping,
Joint Application Designs (JADs) or Cyclic Redundancy Check
(CRC) sessions or other techniques of requirements gathering
done in overlapping phases.

REFERENCES
[1] Standish Group, “CHAOS Report. 2009,” Boston, pp. 1-5, 2009.
[2] L. Guimares, and P. Vilela, “Comparing Software Development Models

Using CDM, “ in Proceedings of the 6th Conference on Information
Technology Education, New Jersey, pp. 339-347, 2005.

[3] N. Ruparelia, (2010). “Software Development Lifecycle Models,” ACM
SIGSOFT Software Engineering Notes, vol. 35, no. 3, pp. 8-13, 2010.

[4] L. J. Osterweil, “A Process Programmer Looks at the Spiral Model: A
Tribute to the Deep Insights of Barry W. Boehm. International Journal
of Software Informatics, vol. 5, no. 3, pp. 457-474, 2011.

[5] I. Sommerville, “Software Process Models,” in ACM Computing
Surveys, vol. 28, no. 1, pp. 269-271, 1996.

[6] I. Sommerville, Software Engineering (9th ed.),” Boston: Addison
Wesley, pp. 1-80, 2010.

[7] Y. Bassil, “A Simulation Model for the Waterfall Software Development
Life Cycle,” International Journal of Engineering and Technology, vol.
2, no. 5, pp. 1-7, 2012.

[8] R. Dash, and R. Dash, “Risk Assessment Techniques for Software
Development,” European Journal of Scientific Research, vol. 42, no. 4,
pp. 629–636, 2010.

[9] N. Munassar, and A. Govardhan, “A Comparison between Five Models
of Software Engineering,” in International Journal of Computer Science
Issues, vol. 7, no. 5, pp. 94–101, 2010.

[10] H. Hijazi, T. Khdour, and A. Alarabeyyat, “A Review of Risk
Management in Different Software Development Methodologies,” in
International Journal of Computer Applications, vol. 45, no. 7, pp. 8-12,
2012.

[11] W. Royce, “Managing the Development of Large Software Systems,” in
IEEE WESCON, pp. 1-9, 1970.

[12] E. M. Chocano, “Comparative Study of Iterative Prototyping vs.
Waterfall Process Applied to Small and Medium Sized Software
Projects.,” Unpublished M.Eng Thesis, Department of System Design
and Management Program, MIT, MA. Retrieved on May 24, 2017 from
http://hdl.handle.net/1721.1/34801, 2004.

[13] I. Sommerville, “Software Engineering (7th ed.),” Boston: Addison
Wesley, pp. 1-80, 2004.

[14] Bhuvaneswari, T. and S. Prabaharan, “A Survey on Software
Development Life Cycle Models,” International Journal of Computer
Science and Mobile Computing, vol. 2, no. 5, pp. 262-267, 2013.

AUTHORS PROFILE

Alhassan Mohammed Baba holds a B.Tech, M.Tech in Computer Science
from Federal University of Technology, Minna, Nigeria. He is currently a
PhD Research Student of Department of Computer Science, Nigeria Defence
Acadamy, Kaduna, Nigeria. He is a member of Computer Professionals
Registration Council of Nigeria (CPN) and Nigerian Computer Society
(NCS),

Francisca Nonyelum Ogwueleka is a Professor of Computer Science and
current Dean, Faculty of Military Science and Interdisciplinary Studies,
Nigerian Defence Academy, Kaduna, Nigeria. She obtained a Bachelor of
Engineering (B.Eng) in Computer Science & Engineering, Master of Science
(M.Sc) and Doctor of Philosophy (Ph.D) degrees in Computer Science. She is
a member of Computer Professionals Registration Council of Nigeria (CPN),
Nigerian Computer Society (NCS), Association for Computing Machinery
(ACM), Society of Digital Information and Wireless Communications
(SDIWC) and International Association of Engineers (IAENG). Although, her
research primary domain is data mining techniques, tools and methods; big
data and cloud security, she has published standard research work in different
aspects of computing and multidisciplinary fields in reputable international
journals. Outside of the scope of developmental problems, she has research
contributions in the areas of Internet architecture, machine-to-machine
applications, digital signal design, image processing and analysis, email
classification, intrusion detection, steganography, penetration testing
solutions, information retrieval and security. She has supervised several
Computer Science PhD dissertations, Masters in Computer Science,
Information Technology, Computer Engineering, Cyber Security Science,
Information Management Technology and PGD projects in Computer Science.
She has supported and collaborated with other Universities and even the
Nigerian Universities Commission in curriculum development and capacity
building. She has nine (9) published books and over eighty (80) good impact
factor international journal publications.
.

